Current Issue : April-June Volume : 2022 Issue Number : 2 Articles : 5 Articles
In this paper, we propose a new type of tri-input tunneling field-effect transistor (Ti-TFET) that can compactly realize the “Majority-Not” logic function with a single transistor. It features an ingenious T-shaped channel and three independent-biasing gates deposited and patterned on its left, right, and upper sides, which greatly enhance the electrostatic control ability between any two gates of all the three gates on the device channel and thus increase its turn-on current. (e total current density and energy band distribution in different biasing conditions are analyzed in detail by TCAD simulations. (e turn-on current, leakage current, and ratio of turn-on/off current are optimized by choosing appropriate work function and body thickness. TCAD simulation results verify the expected characteristics of the proposed Ti-TFETs in different working states. Ti-TFETs can flexibly be used to implement a logic circuit with a compact style and thus reduce the number of transistors and stack height of the circuits. It provides a new technique to reduce the chip area and power consumption by saving the number of transistors....
The buffer and surface trapping effects on low-frequency (LF) Y-parameters of Fe-doped AlGaN/GaN high-electron mobility transistors (HEMTs) are analyzed through experimental and simulation studies. The drain current transient (DCT) characterization is also carried out to complement the trapping investigation. The Y22 and DCT measurements reveal the presence of an electron trap at 0.45–0.5 eV in the HEMT structure. On the other hand, two electron trap states at 0.2 eV and 0.45 eV are identified from the LF Y21 dispersion properties of the same device. The Y-parameter simulations are performed in Sentaurus TCAD in order to detect the spatial location of the traps. As an effective approach, physics-based TCAD models are calibrated by matching the simulated I-V with the measured DC data. The effect of surface donor energy level and trap density on the two-dimensional electron gas (2DEG) density is examined. The validated Y21 simulation results indicate the existence of both acceptor-like traps at EC –0.45 eV in the GaN buffer and surface donor states at EC –0.2 eV in the GaN/nitride interface. Thus, it is shown that LF Y21 characteristics could help in differentiating the defects present in the buffer and surface region, while the DCT and Y22 are mostly sensitive to the buffer traps....
A one-dimensional lattice in tunnel-diode (TD) oscillators supports self-sustained solitary pulses resulting from the balance between gain and attenuation. By applying the reduction theory to the device’s model equation, it is found that two relatively distant pulses moving in the lattice are mutually affected by a repulsive interaction. *is property can be efficiently utilized in equalizing pulse positions to achieve jitter elimination. In particular, when two pulses rotate in a small, closed lattice, they separate evenly at the asymptotic limit. As a result, the lattice loop can provide an efficient platform to obtain low-phase-noise multiphase oscillatory signals. In this work, the interaction between two self-sustained pulses in a TD-oscillator lattice is examined, and the properties of interpulse interaction are validated by conducting several measurements using a test breadboarded lattice....
GaN-based light-emitting diodes (LEDs) became one of the most widely used light sources. One of their key factors is power conversion efficiency; hence, a lot of effort is placed on research to improve this parameter, either experimentally or numerically. Standard approaches involve deviceoriented or system-oriented methods. Combining them is possible only with the aid of compact, lumped parameter models. In the paper, we present a new electro-thermal model that covers all the complex opto-electro-thermal phenomena occurring within the operating LED. It is a simple and low computational cost solution that can be integrated with package- or system-oriented numerical analysis. It allows a parametric analysis of the diode structure and properties under steady-state operating conditions. Its usefulness has been proved by conducting simulations of a sample lateral GaN/InGaN LED with the aid of ANSYS software. The results presented illustrate the current density and temperature fields. They allow the identification of ‘hot spots’ resulting from the current crowding effect and can be used to optimise the structure....
This study presents a voltage-controlled oscillator (VCO) in a cross-coupled pair configuration using a multi-tapped switched inductor with two switch-loaded transformers in 0.5 μm GaN technology. Two switch-loaded transformers are placed at the inner and outer portions of the multi-tapped inductor. All the switches are turned off to obtain the lowest sub-band. The outer transformer with three pairs of switches is turned on alternately to provide three sub-band modes. A pair of switches at the inner transformer provide a high-frequency band. Two switch-loaded transformers are turned on to provide the highest sub-band. Six modes are selected to provide a wide tuning range. The frequency tuning range (FTR) of the VCO is 27.8% from 3.81 GHz to 8.04 GHz with a varactor voltage from 13 V to 22 V. At a 1 MHz frequency offset from the carrier frequency of 4.27 GHz, the peak phase noise is −119.17 dBc/Hz. At a power supply of 12 V, the output power of the carrier at 4.27 GHz is 20.9 dBm. The figure of merit is −186.93 dB because the VCO exhibits a high output power, low phase noise, and wide FTR. To the best of the author’s knowledge, the FTR in VCOs made of GaN-based high electron mobility transistors is the widest reported thus far....
Loading....